
Diffraction pattern calculations for a certain class of  N-fold quasilattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 6873

(http://iopscience.iop.org/0305-4470/31/32/011)

Download details:

IP Address: 171.66.16.102

The article was downloaded on 02/06/2010 at 07:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/32
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 6873–6886. Printed in the UK PII: S0305-4470(98)90619-9

Diffraction pattern calculations for a certain class of
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Abstract. Using the ‘cut-and-project’ method we obtain seven- and nine-fold quasiperiodic
lattices. For such quasilattices the structure factors are calculated analytically through integration
in higher-dimensional spaces. The obtained formulae are compared with the direct numerical
calculations of Fourier transforms.

1. Introduction

The goal of this paper is to carry out analytical calculations of the diffraction pattern of a
certain class ofN -fold quasilattices which can be generated by a projection from a higher-
dimensional space [1]. Whereas the case ofN 6 5 has been already examined many times
before [7] the generic case ofN > 5 does not seem to have been tackled. Several papers [2]
have been scarcely devoted to some scaling properties of the regarded diffraction patterns,
in relation to the self-similarity of quasilattices, which can be analysed without performing
analytical calculations of the structure factor. We would like to show that the mathematical
difficulties encountered by the extension of the calculation formalism from the caseN = 5
to the generic one can be easily solved.

2. An N -fold quasilattice and its diffraction pattern

We consider a class ofN -fold quasilattices, whereN is odd. These quasilattices can be
generated by the cut-and-project method [1, 7] from theN -dimensional space (see figures 1
and 2 for representatives of seven- and nine-fold quasilattices respectively). The quasilattices
can also be regarded as tilings built fromN−1

2 kinds of unit rhombuses with angles2π
N

,
2·2π
N
, . . . , 2·(N−1)π

2·N respectively. With respect to the way of generation they are similar to
the Penrose quasilattice, because both the orientation of the projection planeE, embedded
in theN -dimensional space, and the choice of the projection strip obey the same rules as
for the Penrose quasilattice. The projection planeE is chosen as an invariant subspace with
respect to a following permutationg of the unit vectorsei of the N -dimensional space:
g(ei ) = ei+1. More precisely, the vectors spanningE read:

v0 = (v0j )
N
j=1 =

√
2

N

(
cos

2πj

N

)N
j=1

and w0 = (w0j )
N
j=1 =

√
2

N

(
sin

2πj

N

)N
j=1

.
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Figure 1. A seven-fold quasilattice.

Figure 2. A nine-fold quasilattice.

The (N −2)-dimensional perpendicular spaceE⊥ falls in this case into a direct sum ofN−3
2

planesE1, E2, . . . , EN−3
2

and a straight lined which are also invariant by application of the
mappingg. The base vectors of the consecutive subspaces take the form:

E1 :
√

2
N

(
cos2·2πj

N

)N
j=1

√
2
N

(
sin 2·2πj

N

)N
j=1



Diffraction patterns of quasilattices 6875

E2 :
√

2
N

(
cos2·3πj

N

)N
j=1

√
2
N

(
sin 2·3πj

N

)N
j=1

... (1)

EN−3
2

:
√

2
N

(
cos(N−1)πj

N

)N
j=1

√
2
N

(
sin (N−1)πj

N

)N
j=1

d :

√
1

N
(1, . . . ,1︸ ︷︷ ︸
N times

).

According to the general formalism of diffraction pattern calculations (see [1, 7]) of
quasilattices obtained by the cut-and-project method, the structure factor reads:

F(k‖) =
∑

k=k‖+k⊥

∫
W

dN−2r⊥ exp{ik⊥ · r⊥} (2)

whereW is a projection of the strip ontoE⊥, andk‖ andk⊥ are projections of a wavevector
k = 2π(h1, . . . , hN) from the N -dimensional reciprocal space down toE and the (N -
2)-dimensional perpendicular spaceE⊥, respectively. The sum runs over allk⊥’s being
assigned tok‖ in such a way thatk = k‖ + k⊥.

The presence of this sum in front of the integral will cause a reduction of the dimension
of the solidW . It is known that the minimal dimension of the hyperspace, needed to obtain
a N -fold quasilattice by the cut-and-project method, amountsφ(N) [3, 2] whereφ is the
Eulers totient function. The minimal dimension is also equal to the rank of the diffraction
pattern, i.e. to the minimum set of axis vectors which index the diffraction pattern of the
structure [4–6]. Because the dimension ofE equals two, one expects, that one has indeed
to integrate over(φ(N)− 2)-dimensional solids. Let us try to substantiate this statement.

In the case of the quasilattices which we examine there is no one-to-one correspondence
amongk‖ andk⊥. It is due to the fact that the perpendicular spaceE⊥ intersectsZN . The
dimension of this intersection is equal to the ‘surplus of dimensions’p = N − φ(N). Let
us assume thatE⊥∩ZN is spanned by a set of vectors{aj }pj=1. Let us now take an arbitrary
k⊥ and add a vector 2πV , whereV = n1a1+ · · · + npap ∈ E⊥ ∩ZN , to it. This addition
leads obviously to another, different,k′⊥ = k⊥ + 2πV , which is, however, assigned to the
samek‖, because the projection of 2πV ontoE equals zero.

After replacingk⊥ by k′⊥ in formula (2) we obtain:

F(k‖) =
∫
W

dN−2r⊥ exp{ik⊥ · r⊥}
+∞∑

n1,...,np=−∞
exp{i2πn1a1r⊥} · . . . · exp{i2πnpapr⊥}

=
∫
W

dN−2r⊥ exp{ik⊥ · r⊥}
+∞∑

h1,...,hp=−∞
δ(a1r⊥ − h1) · . . . · δ(apr⊥ − hp) (3)

where we applied the following relation
∑+∞

n=−∞ exp{i2πrn} = ∑+∞
h=−∞ δ(r − h). The

product ofp = N − φ(N) delta functions occurring in (3) will diminish the dimension of
the solids, over which we have to integrate, from(N − 2) to (N − 2−p) = (φ(N)− 2) as
expected.

Let us now apply these considerations to the casesN = 7 andN = 9.
First of all we have to determine the intersectionE⊥ ∩ ZN . After some lengthy, but

straightforward calculations we obtain the following result:

E⊥ ∩ ZN =
{
(n3, n3, n3, n3, n3, n3, n3) for N = 7, wheren3 ∈ Z
(n1, n2, n3, n1, n2, n3, n1, n2, n3) for N = 9, wheren1, n2, n3 ∈ Z.

(4)
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Actually, if we decompose the above vectors to the base vectors ofE andE⊥ the components
parallel toE vanish

(n1, n2, n3, n1, n2, n3, n1, n2, n3) = −n1− n2+ 2n3

3
v2+

√
3

3
(n1− n2)w2

+n1+ n2+ n3

3
d

wherev2,w2 are base vectors ofE2 and read:

v2 = (v2j )
N
j=1 :=

(
cos

(
6π

9
j

))N
j=1

w2 = (w2j )
N
j=1 :=

(
sin

(
6π

9
j

))N
j=1

and

d = (1, . . . ,1︸ ︷︷ ︸
N times

).

Therefore a transformation

knew :=
{
k + 2π(n3, n3, n3, n3, n3, n3, n3) for N = 7

k + 2π(n1, n2, n3, n1, n2, n3, n1, n2, n3) for N = 9

changesk⊥ but has no influence onk‖. Projectingk onto the appropriate spacesE and
E⊥ and denoting the appropriate projections asπ andπ⊥ yields:

k‖new= πk = k‖
becausev2,w2 andd are perpendicular toE, and

k⊥new= π⊥k =


k⊥ + 2π(0, 0, 0, 0, n3) for N = 7

k⊥ + 2π

3
(0, 0,−n1− n2+ 2n3,

√
3(n1− n2), 0, 0, n1+ n2+ n3)

for N = 9.

Taking advantage of the above, on the basis of formula (3), we obtain expressions for the
structure factor.

ForN = 7 andr⊥ := (r⊥j )5j=1 we obtain:

F(k‖) =
∫
W

dN−2r⊥ exp{ik⊥ · r⊥}
∑
h3

δ(h3− r⊥5). (5)

ForN = 9 andr⊥ := (r⊥j )7j=1 one finds:

F(k‖) = 9
∫
W

dN−2r⊥ exp{ik⊥ · r⊥}
∑

h1,h2,h3

δ(3h1− (−r⊥3+
√

3r⊥4+ r⊥7))

·δ(3h2− (−r⊥3−
√

3r⊥4+ r⊥7)) · δ(3h3− (2r⊥3+ r⊥7)). (6)

Ultimately the above formulae take the following form.
ForN = 7

F(k‖) =
∑
h3

∫
Ph3

dr(1)⊥ dr(3)⊥ exp i{k(1)⊥ · r(1)⊥ + k(2)⊥ · r(2)⊥ } · exp i{k5h3} (7)
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and forN = 9

F(k‖) =
∑

h1,h2,h3

∫
Ph1,h2,h3

dr(1)⊥ dr(3)⊥ exp i{k(1)⊥ · r(1)⊥ + k(3)⊥ · r(3)⊥ }

× exp i

{
k(2)⊥ ·

(−h1− h2+ 2h3

2
,

√
3

2
(h1− h2)

)}
· exp i{k7(h1+ h2+ h3)}

(8)

where we decomposed the(N − 2)-dimensionalk⊥ andr⊥ vectors to their components in
the consecutive invariant subspacesE1, . . . , E3 andd:

k⊥ :=
{
(k(1)⊥ ,k

(2)
⊥ , k5) for N = 7

(k(1)⊥ ,k
(2)
⊥ ,k

(3)
⊥ , k7) for N = 9

and analogically forr⊥.

On the basis of (5) and (6) the solidsPh1,h2,h3 andPh3 occurring in the integration limits
are determined as intersections of the windowW with certain hyperplanes:

Ph3 := W ∩ {r5 = h3}

Ph1,h2,h3 := W ∩
{
(r3, r4, r7) =

( 3∑
l=1

hl cos
2π

3
l,

3∑
l=1

hl sin
2π

3
l,

3∑
l=1

hl

)}
.

They are complicated four-dimensional polytopes and can be described as unions of linear
combinations of certain four-dimensional vectors with some additional constraints imposed
on the coefficients

Ph3 :=
{ 7∑
j=1

ξj

(
cos

(
4π

7
j

)
, sin

(
4π

7
j

)
, cos

(
6π

7
j

)
, sin

(
6π

7
j

))
∣∣∣∣ 7∑
j=1

ξj = h3 andξj ∈ [0, 1]

}
(9)

Ph1,h2,h3 :=
{ 9∑
j=1

ξj

(
cos

(
4π

9
j

)
, sin

(
4π

9
j

)
, cos

(
8π

9
j

)
, sin

(
8π

9
j

)) ∣∣∣∣ 2∑
j=0

ξ3j+p = hp

wherep = 1, . . . ,3 andξj ∈ [0, 1]

}
. (10)

An essential difficulty which we encounter now is the necessity of integration over fairly
complicated four-dimensional polytopes. This can, however, be done by decomposingPh3

andPh1,h2,h3 into a union of simpler solids, so-calledsimplices

S
(j)

h := Sh(wj

1, . . . ,w
j

4) :=
{ 4∑
k=1

ξkw
j

k

∣∣∣∣ 4∑
k=1

ξk 6 1, ξk ∈ (0, 1)

}
having disjoint interiors.

The decompositions read:

Ph3 =
t [h3]⋃
j=1

S
(j)

h3
Ph1,h2,h3 =

t [h1,h2,h3]⋃
j=1

S
(j)

h1,h2,h3
(11)

wheret [h3] and t [h1, h2, h3] stand for the number of simplices and

Int (Sjh3
∩ Slh3

) = Int (Sjh1,h2,h3
∩ Slh1,h2,h3

) = {�} for l 6= j.
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The integrals over simplicesS(w1, . . . ,w4) can be easily calculated analytically by
performing the following variable substitutionr :=∑4

j=1 ξjwj :∫
S(w1,...,w4)

d4reikr = D
∫ 1

0
dξ1

∫ 1−ξ1

0
dξ2

∫ 1−ξ1−ξ2

0
dξ3

∫ 1−ξ1−ξ2−ξ3

0
dξ4

× exp

{
i

4∑
j=1

ξj (k ◦wj )
}
= D

i(A1− A2)

×
[

1

(A1− A3)

(
f (A1)− f (A4)

A1− A4
− f (A3)− f (A4)

A3− A4

)
− 1

(A2− A3)

(
f (A2)− f (A4)

A2− A4
− f (A3)− f (A4)

A3− A4

)]
whereD = det[w1,w2,w3,w4], Aj := kwj andf (x) = e−i x2

sin x
2

x
2

. (12)

Using formulae (8), (7) and (12), we are able to calculate the structure factor analytically,
provided we know thesimplicial decompositionsof the polytopesPh3 andPh1,h2,h3. In other
words, the problem we face, is based on the following two steps.

(1) Expressing the polytopesPh3 and Ph1,h2,h3 as convex hulls of certain sets of
vectors. For each of the considered polytopes we are looking for four-dimensional vectors
w1, . . . ,wm such that the smallest convex set comprising them equals to the appropriate
polytope:

Ph3 =
{ m∑
j=1

ξjwj

∣∣∣∣ m∑
j=1

ξj = 1 andξj > 0

}
and accordingly forPh1,h2,h3.

(2) Finding the simplicial decompositions (11) ofPh3 and Ph1,h2,h3, it means
decompositions into simplices with disjoint interiors.

The first step is presented in the appendix. Different algorithms for simplicial
decompositions of convex polytopes or equivalently finding all facets of a convex polytope
can be taken from [8]. We have, however, devised an algorithm ourselves, treating this case
as an interesting problem of linear programming.

3. Comparison with numerical calculations in physical space

A final verification of the correctness of our considerations is a comparison with the structure
factor calculated directly from its definitionF(k) :=∑r exp{ik · r}. For this purpose, one
has to generate a sufficiently big cluster of atoms so that the results of the numerical
calculations depend on neither the size nor the shape of the cluster. One achieves that by
taking the number of atoms of the order of 2000 and 5000 for the seven- and nine-fold
quasilattices, respectively. In figures 3 and 4 one can see cross sections of the diffraction
pattern of seven-fold quasilattices along theY - andX-axes, respectively. The solid line
represents the numerical calculations, whereas the analytical results obtained from formulae
(8), (7) and (12) are marked with dots. There is a perfect coincidence both for the positions
of peaks and their intensities. The full two-dimensional diffraction pattern exhibiting a
marvellous 14-fold symmetry has been presented in figure 5. In a similar way we have
presented the diffraction pattern of the nine-fold quasilattice. Figures 6 and 7 show cross
sections of the diffraction pattern along theY - andX-axes, respectively. The full two-
dimensional diffraction pattern has been presented in figure 8. As far as the positions of
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Figure 3. Diffraction pattern along theY -axis for the seven-fold quasilattice.

Figure 4. Diffraction pattern along theX-axis for the seven-fold quasilattice.
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Figure 5. Diffraction pattern of the seven-fold quasilattice.

Figure 6. Diffraction pattern along theY -axis for the nine-fold quasilattice.
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Figure 7. Diffraction pattern along theX-axis for the nine-fold quasilattice.

Figure 8. Diffraction pattern of the nine-fold quasilattice.

peaks are concerned, there is an agreement among the analytical results and the numerical
calculations. There are, however, some deviations in the amplitudes of certain peaks.
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These discrepancies decrease systematically with the number of sites of the cluster used to
numerical calculations. It seems that the convergence of the Fourier transforms of a finite
cluster is much slower then in the case of the seven fold quasilattice. This may be due
to the fact that the number of integrals in the formulae for the structure factor (8), (7), or
equivalently the number of different polytopes, over which one has to integrate, is greater
than in the former case of the seven-fold quasilattice. It is worth remarking that we achieve
a faster convergence of the numerically calculated structure factor for symmetric, round
shape clusters as shown in figures 1 and 2.

4. Conclusions

The calculated diffraction patterns exhibit the following properties.
(1) They have a 2N -fold symmetry which is a consequence of theN -fold symmetry of

the quasilattice and an invariance of the diffraction pattern with respect to inversion.
(2) They have certain scaling features, following from the invariance of the quasilattices

under inflation, see [2].
(3) The diffraction spots, that is allk assigned to non-vanishing peaks, fill the plane

densely.
In this paper we have investigated in details the cases of seven- and nine-fold

quasilattices. The choice of right these values ofN was mostly due to the fact that in
both cases the polytopes in the perpendicular space are four-dimensional and thereby the
formalism of calculations is similar. It is, however, worth to emphasize that the consideration
of the generic case, whereN is an arbitrary integer, does not present substantial difficulties.
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Appendix. Presenting the four-dimensional polytopesPh3 and Ph1,h2,h3 as convex
hulls of certain sets of vectors

Let us note that both kinds of polytopesPh3 andPh1,h2,h3 can be presented as a projection
of a certainN -dimensional solid down to the perpendicular spaceE⊥.

A.1. The caseN = 9

Let us focus onPh1,h2,h3 and define a following multitude of points embedded in the nine-
dimensional space:

Sh1,h2,h3 :=
{
(ξ1, . . . , ξ9)

∣∣∣∣ 2∑
j=0

ξ3j+p = hp, p = 1, . . . ,3 andξj ∈ [0, 1]

}
. (13)

The above solid, which is actually an intersection of the unit hypercube with a hyperplane
given by the right-hand side equations in (13), yields our four-dimensional polytopePh1,h2,h3
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when projecting ontoE1 ⊕ E3 (cf (10)). The perpendicular spaceE⊥ has the following
decompositionE⊥ = E1⊕ E2⊕ E3⊕ d (see (1)).

Ph1,h2,h3 = π⊥Sh1,h2,h3

whereπ⊥ is a projection ontoE1⊕ E3.
Ph1,h2,h3 is a convex hull of the projections of all vertices of the underlying nine-

dimensional solidSh1,h2,h3.
The only point which remained now is to find the vertices of the solidSh1,h2,h3. Taking

an attentive look at definition (13) leads to a conclusion that the solidSh1,h2,h3 can be treated
as a Cartesian product of three three-dimensional solids:

Sh1,h2,h3 = S(1)h1
⊗ S(2)h2

⊗ S(3)h3

whereS(j)h :=
{( 2∑

p=0

ξ3·p+je3·p+j

)∣∣∣∣ 2∑
p=0

ξ3·p+j = h, ξj ∈ [0, 1]

}
(14)

whereej is a unit vector from the canonical base in nine-dimensional space.
Therefore the sought after vertices ofSh1,h2,h3 can be obtained as all possible sums of

vertices of the consecutive solidsS(1)h1
, S

(2)
h2
, S

(3)
h3

. In other words, they take the form:

w(1)
j +w(2)

p +w(3)
r wherew(l)

j are vertices ofS(l). (15)

On the other hand, we can easily find the vertices ofS
(j)

h , they read:

vertices ofS(j)h =


e3·0+j , e3·1+j , e3·2+j if h = 1 (equilateral triangle)

−e3·0+j ,−e3·1+j ,−e3·2+j if h = 2 (inverted triangle)

0 if h = 0 or h = 3 (a point).

(16)

Actually the vertices ofS(j)2 differ from formula (16) and read

e3·0+j + e3·1+j , e3·1+j + e3·2+j , e3·2+j + e3·0+j

but after projecting down toE⊥ we get the same vectors in both cases.
Making use of both above formulae (15) and (16) and taking into account that the

indicesh1, h2, h3 can only accept integer values ranging from 0 to 3 we have enumerated
all possible, different polytopesSh1,h2,h3 and their vertices in table A1. Two polytopes are
considered to be different if they cannot be transformed into each other through an inversion
or an orthogonal transformation. The manner in which the polytopes change after applying
certain transformations is expressed in the following lemma.

Lemma.Let II be an inversion andg an orthogonal transformation defined as follows

g =


cos( 4π

9 ) sin( 4π
9 ) 0 0

− sin( 4π
9 ) cos( 4π

9 ) 0 0
0 0 cos( 8π

9 ) sin( 8π
9 )

0 0 − sin( 8π
9 ) cos( 8π

9 )

 .
Then following equalities hold:

IIPh1,h2,h3 = P3−h1,3−h2,3−h3 and gPh1,h2,h3 = Ph2,h3,h1.

In other words an application of the ‘rotation’g is due to a transition to another polytope
with cyclic permuted indices.
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Table A1. A list of all possible different solidsSh1,h2,h3. ej is a unit vector from the canonical
base.

Number
h1 h2 h3 Vertices ofSh1,h2,h3 of vertices h1 + h2 + h3 Remarks

1 0 0 e3·p+1 3 1
0 1 0 e3·p+2 3 1 border set
0 0 1 e3·p+3 3 1

1 1 0 e3·p+1 + e3·q+2 9 2
0 1 1 e3·p+2 + e3·q+3 9 2
1 0 1 e3·p+3 + e3·q+1 9 2

2 0 0 −e3·p+1 3 2
0 2 0 −e3·p+2 3 2 border set
0 0 2 −e3·p+3 3 2

1 1 1 e3·p+1 + e3·q+2 + e3·r+3 27 3

2 1 0 −e3·p+1 + e3·q+2 9 3
0 2 1 −e3·p+2 + e3·q+3 9 3
1 0 2 −e3·p+3 + e3·q+1 9 3

2 0 1 −e3·p+1 + e3·q+3 9 3
1 2 0 −e3·p+2 + e3·q+1 9 3
0 1 2 −e3·p+3 + e3·q+2 9 3

2 1 1 −e3·p+1 + e3·q+2 + e3·r+3 27 4
1 2 1 −e3·p+2 + e3·q+3 + e3·r+1 27 4
1 1 2 −e3·p+3 + e3·q+1 + e3·r+2 27 4

2 2 0 −e3·p+1 − e3·q+2 9 4
0 2 2 −e3·p+2 − e3·q+3 9 4
2 0 2 −e3·p+3 − e3·q+1 9 4

3 1 0 e3·q+2 3 4
0 3 1 e3·q+3 3 4 border set
1 0 3 e3·q+1 3 4

3 0 1 e3·q+3 3 4
1 3 0 e3·q+1 3 4 border set
0 1 3 e3·q+2 3 4

Proof. It holds per definitiong(vj ) = vj−1 wherevj := (cos
(

4π
9 j
)

, sin
(

4π
9 j
)
, cos

(
8π
9 j
)
,

sin
(

8π
9 j
))

. Thus,

N∑
j=1

ξjg(vj ) =
N∑
j=1

ξj+1vj

and under the transformationg the coefficientsξj change as follows

ξj −→ ηj = ξj+1.
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Thereafter the index of the ‘rotated’ polytope reads

h′p =
2∑

j=0

η3·j+p =
2∑

j=0

ξ3·j+p+1 = hp+1.

Note thatII (vj ) := −vj =
∑

k 6=j vk. It is due to the fact that
∑9

k=1 vk = E0.
Therefore,

N∑
j=1

ξj II (vj ) =
N∑
j=1

ξj
∑
k 6=j
vk =

∑
k

vk
∑
j 6=k

ξj .

It means that under the inversionII ξj −→ ηj =
∑

k 6=j ξk. The remainder of the proof is
now straightforward. The index of the ‘rotated’ polytope reads:

h′p =
2∑

j=0

η3·j+p =
2∑

j=0

∑
k 6=3·j+p

ξk = 3 ·
9∑
k=1

ξk −
2∑

j=0

ξ3·j+p = 3(h1+ h2+ h3)− hp.

Taking the result modulo 3 we obtainh′p = 3− hp. �

Note that not all polytopesPh1,h2,h3 are relevant for our considerations because some of
them are border sets which have zero-volume and therefore the integrals over them in (8)
vanish. Altogether, there are six different polytopes, plus their images under the mapping
g, which have to be taken into account by our analytical calculations (see table A1).

A.2. The caseN = 7

The solidsPh3 (see definition (9)) are even simpler to investigate than the former case.
Reasoning similarly as in section A.1 leads to the following conclusion.

Statement.Ph3 is a convex hull of the projections of all vertices of an underlying seven-
dimensional solidSh3 which is defined as follows

Sh3 :=
{
(ξ1, . . . , ξ7)

∣∣∣∣ 7∑
j=1

ξj = h3 andξj ∈ [0, 1]

}
.

Table A2. All possible different solidsSh3. ej is a unit vector from the canonical base.

Number
h3 Vertices ofSh3 of vertices Remarks

1 ei 7

2 ei + ei+1 3 · 7 All possible sums
ei + ei+2 of pairs of vectors
ei + ei+3 ei + ej i 6= j

3 ei + ei+1 + ei+2 5 · 7 All possible sums
ei + ei+2 + ei+4 of triples of vectors
ei + ei+3 + ei+6 ei + ej + ek i 6 j 6 k
ei + ei+4 + ei+6

ei + ei+1 + ei+3
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This solid is indeed an intersection of a seven-dimensional unit hypercube with a
hyperplane determined by the equation on the right-hand side of the definition

∑7
j=1 ξj = h3.

Due to the fact that the hyperplane is six-dimensional, all vertices ofSh3 are obtained as
intersections of the hyperplane with all edges of the unit hypercube. There are 7· 26 edges,
each of which can be described as a multitude of points(ξj ) having the following property.
Exactly one component of these points is an independent variable ranging from 0 to 1,
whereas the other components can accept exactly two values, either 0 or 1, that is

(ξj ) = (θ1, . . . , θp−1, tp, θp+1, . . . , θ7) wheretp ∈ [0, 1], θj ∈ {0, 1}.
Inserting the above expression to the definition of the hyperplane yields:tp = h3−

∑
k 6=p θk.

It follows that tp has to be an integer either 0 or 1, because bothh3 and
∑

k 6=p θk are integers
and tp ∈ [0, 1]. Therefore, considering sequentially the casesh3 = 1, 2, 3 we calculated
the vertices of the solidsSh3 and enumerated them in table A2. It turns out that we can
limit ourselves to the casesh3 = 1, 2, 3 because the solidsSh3 (and accordinglyPh3) change
under inversion in the following fashion:IISh3 = S7−h3. Because of that the polytopesPh3

for h3 = 4, 5, 6 are inversions of the appropriateP7−h3.

A.3. General remarks

It is also worth paying attention to another meaning of the information gathered in tables A1
and A2. The volumes of the polytopesPh3 andPh1,h2,h3 determine the occurrence frequency
of certain vertices in our quasilattice. Let us focus onPh1,h2,h3 and denoten1, . . . , n9 as
indices of a vertex in the nine-fold quasilattice. From the homogeneous distribution of the
grid-points in the perpendicular space† and from the definition of the polytopesPh1,h2,h3

it follows that the volume ofPh1,h2,h3 determines the occurrence frequency of vertices for
which hp =

∑2
j=0 n3·j+p.
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